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RNA Splicing
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Alternative Splicing & Isoform Expression
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What Is RNA seguencing

we sequence small bits of these*

alternative splicing (isoforms/transcriFy

DNA (a genome)

* most protocols actually sequence complementary DNA (cDNA), not RNA directly



Actual protocols are much more involved

RNA
Extraction

Fragmenta-

) tion
T—"‘
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Prakash, Celine, and Arndt Von Haeseler. "An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the Expected Fragment Starting-Point a
of Computational Biology 24.3 (2017): 200-212.



Transcript Quantification: An Overview
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Why not simply “count” reads

The RNA-seq reads are drawn from transcripts, and
our (spliced) aligners let us map them back to the
transcripts on the genome from which they originate.

Problem: How do you handle reads that align equally-
well to multiple isoforms / or multiple genes?

e Discarding multi-mapping reads leads to incorrect
and biased quantification

e Even at the gene-level, the transcriptional output of a
gene should depend on what isoforms it is
expressing.



First, consider this non-Biological example

Imagine | have two colors of circle, and

. | want to estimate the fraction of circles
that are and . 'l sample tfrom them by
tossing down darts.

Here, a dot of a color means | hit a circle of that color.
What type of circle is more prevalent?
What is the fraction of red / blue circles?
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First, consider this non-Biological example

Imagine | have two colors of circle, and

. | want to estimate the fraction of circles
that are and . 'l sample tfrom them by
tossing down darts.

You're missing a crucial piece of information!
The areas!

There i1s an analog in RNA-seq, one needs to know the
length of the target from which one is drawing to
meaningfully assess abundance!




Resolving multi-mapping is fundamental to quantification

Can even affect abundance estimation in absence of alternative-splicing
(e.g. paralogous genes)

Paralogs of ENSG00000090612

salmon_gene featureCounts FPKM_gene

-
-
[

Estimated TPM

spearman = 0.975
pearson = 0.975

spearman = 0.643
pearson = 0.78

] r 1 ]
1 10 1 10
True TPM

From: Soneson C, Love M| and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)



Resolving multi-mapping is fundamental to quantification

These errors can affect DGE calls

1.00-

0.751

Variants of Salmon

Variants of “counting”
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Note: induced large changes
in Isoform composition to
demonstrate this effect.
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From: Soneson C, Love M| and Robinson MD 2016 [version 2; referees: 2 approved] F1000Research 2016, 4:1521 (doi: 10.12688/f1000research.7563.2)
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How can we perform inference from sequenced fragments?

Experimental Mixture
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length ) = 100 X 6 cOpies = 600 nt
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How can we perform inference from sequenced fragments?

Experimental Mixture

e _ In-an unbiased experiment,
_ —_— o # Of coples of each txp type

—— -~ —="  « length of each txp type

.....
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................................................................................................................................

length (=) = 100 x 6 cOpies =600nt ~ 30% blue
)=66 x19copies =1254nt ~60% green

length( e )=33 x6copies =198nt ~10% red

|

We call these values n =[0.3, 0.6, 0.1] the nucleotide fractions,
they become the primary quantity of interest

length(



How can we perform inference from sequenced fragments?

Think about the “ideal” RNA-seq experiment . . .
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Resolving a single multi-mapping read

~ P ~ L 4
~. P o e
S ——

Say we knew the n, and observed a single read that mapped
ambiguously, as shown above.

What is the probability that it truly originated from G or R?

e 08
Pr{r from G} = — e ength(G )77R ____________ = 55 6|6 -7 = 0.75
length(G) T Tength(R) © 66 1 3 L
length(G) ~ length(ft) - 66 33 normalization
i 0.1 factor
Pr{r from R} = ——= ___?Rg...l """ LT = st = 0.25

lengtht=———-—— =100 x6 copies =600nt ~ 30% blue
length( === )=066 Xx 19 copies =1254nt ~60% green
length( e )=33 x6copies =198nt ~10% red



Units for Relative Abundance
TPM (Transcripts Per Million)

TPM,; = p; X 10° where 0 < p; <1 and Zpizl
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INnterlude: Maximum Likelihood Estimation
& the EM-algorithm

Maximum Likelihood & EM slides taken from UW CSE312 (winter '17)

Department of Computer Science and Engineering, University of Washington.



A probabilistic view of RNA-Seq quantification

. assumes
nucleotide Known .
. . Independence
fractions transcriptome
of fragments

Pr{F |n,T}=]]Pr{f; |n T}

7=1
observed
fragments N
(reads) = 11> Pr{ti|n} -Pr{fi|tizj=1}
j=1 i=1
Prob. of selecting Prob. of generating
ti given n fragment fj given that it originates from {
Depends on Independent of
abundance abundance
estimate estimate

We want to find the values of n that maximize this probabillity.
We can do this (at least locally) using the EM algorithm.

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1
(2011): 1.
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A probabilistic view of RNA-Seq quantification

. assumes
nucleotide Known .
. . iIndependence
fractions transcriptome
of fragments

N
Pr{F|n,T}= H Pr{f; |, T}  We can safely truncate Priti | n)
to O for transcripts where a

7=1 , .
observed fragment doesn’t map/align.
fragments N (M o

(reads) = 11D Pr{ti | n}-[Pr{fi| i,z =1}
j=1{i=1 )
Prob. of selecting Prob. of generating
ti given n fragment fj given that it originates from {
Depends on Independent of
abundance abundance
estimate estimate

We want to find the values of n that maximize this probability.
We can do this (at least locally) using the EM algorithm.

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1
(2011): 1.



A probabilistic view of RNA-Seq quantification

E-step: (what is the “soft assignment” of each read to the
transcripts where it aligns)

(1 EYP(f| Zyy = 1)
Y P IEDP(fy| Zyy = 1)

Ejg ol Zyil = P(Zy; = 1| F,n") =

M-step: Given these soft assignments, how abundant is each
transcript?

(t+1) _ Ezlg:’ﬂ(t) [Cl]

77i - N ’

where C; = Z nij

This approach IS quite effective. Unfortunately, it's also quite
slow.

Equations adapted from: Bo Li, Victor Ruotti, Ron M. Stewart, James A. Thomson, Colin N. Dewey; RNA-Seq gene expression estimation with read mapping uncertainty, Bioinformatics, Volume 26, Issue 4, 15 February 2010, Pages 493500, https://doi.org/1(



https://doi.org/10.1093/bioinformatics/btp692

Gene expression estimation accuracy in simulated data

Mouse liver
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10000

100
100
100

1 100 10000 1 100 10000 1 100 10000
Maize
rescue
o o o
o o o
o o o
S S S
o o (&)
o o o

1 100 10000 1 100 10000

From supplementary material of : Bo Li, Victor Ruotti, Ron M. Stewart, James A. Thomson, Colin N. Dewey; RNA-Seq gene expression estimation with read mapping uncertainty, Bioinformatics, Volume 26, Issue 4, 15 February 2010, Pages 493-500, https://
btp692


https://doi.org/10.1093/bioinformatics/btp692
https://doi.org/10.1093/bioinformatics/btp692

A probabilistic view of RNA-Seq quantification

We want to find the values of n that maximize this probability.

We can do this (at least locally) using the EM algorithm.

but

This leads to an iterative EM algorithm where each iteration scales
in the total number of alignments in the sample (typically on the
order of ), and typically iterations

L F,T)= H ZPrt|nPrf\t)

JeEF t,€Q(f)

Set of transcripts where f maps/aligns

*Li, Bo, and Colin N. Dewey. "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1
(2011): 1.



Fragment Equivalence Classes

Fragments Transcripts

v
M m O QO ™ >

Reads 1 & 3 both map to transcripts B & E
Reads 2 & 4 both map to transcript C

We have 4 reads, but only 2 eq. classes of reads

eqg. Label Aux weights
{B,E} wiB.Elg wiB.Eig
{C} 2 wiClc

This idea goes quite far back in the RNA-seq literature; at least to
MMSeq (Turro et al. 2011)

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.



Fragment Equivalence Classes

Fragments Transcripts

v
M m O QO ™ >

_ wii encodes the “affinity” of class j
Reads 1 & 3 bOth map tO tranSCI‘IptS B & E to transcript i aCCQrding to the

Reads 2 & 4 both map to transcript C model. This is P{f;| t}, aggregated
for all fragments in a class.

We have 4 reads, but only 2 eq. classes of reads

eg. Label

{B,E}
{C}

This idea goes quite far back in the RNA-seq literature; at least to
MMSeq (Turro et al. 2011)

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.



The number of equivalence classes is small

Yeast Human Chicken
# contigs 7353 107,389 335,377
# samples 6 6 8
Total (paired-end) reads ~36,000,000 ~116,000,000 ~181,402,780
Avg # eq. classes (across samples) 5197 100,535 222,216

The # of equivalence classes grows with the complexity of the
transcriptome — independent of the # of sequence fragments.

Typically, two or more orders of magnitude fewer equivalence
classes than sequenced fragments.

The offline inference algorithm scales in # of fragment
equivalence classes.



This naturally handles different types of multi-mapping
without having to rely on the annotation

(a)

by — ty,lo

ey eo €3 t4
: d1 d2 . d3 8 1 .
| I | | I 1
dq dy dg e-1
| | | | | | |
I | | 1 | | 1
ey ez t
t) — —
I 1

(b)

tiatiB tiali
tiati LA
tiatiB tiA
d1 d2 d3 8'1
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I ] 1 1 1
l A
C
G
I 37
48
4B
"1A'1B

Figure 2 from Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): R13.



This lets us approximate the likelihood efficiently

Approximate this: /\/ sum over all alignments of fragment

cmF)=|] ZPI (ti | m)Pr(f|t;)

[ €F 1=1

- oroduct over all fragments
with this: AT

c(mF)~ || > Pr(ti|m)-Pr(f|F%t)

FaeC \ (i1,t;)eQ(F9I)

K V sum over all transcripts labeling this eq. class
product over all equivalence classes




Why might Pr(f; | t) matter?

Consider the following scenario:

isoform A o o _

o Conditional probabilities can provide
valuable information about origin of a

200bp fragment! Potentially different for

isoform B e, each transcript/fragment pair.
........

450 bp
fragment
length dist. iR Prob of observing a fragment of size ~200 is large

Prob of observing a fragment of size ~450 is small

0 200 800

Many terms can be considered in a general “fragment-transcript agreement” model1.
e.g. position, orientation, alignment path etc.

1 “Salmon provides fast and bias-aware quantification of transcript expression”, Nature Methods 2017



Optimizing the objective

Estimation of background bias models f B
. : offline inference
Recomputation of effective lengths [EM or VBEM]
Offline algorithm runs until convergence | 5

our ML objective has a simple, closed-form update rule in terms of our eq. classes

T count of eq.
class |
W,

E N1 q weight of ti in eq.
vqec 2k tryenFa) Y Wy class ¢

™ estimated read count from transcript |
7771 — at iteration u+1

Zjaj

we also provide the option to use a variational Bayesian objective instead



Actual RNA-seq protocols are a bit more “involved”

PCR Ampli-

Single-end Paired-end

%C‘I’ %ﬂﬂi

There is substantial potential for biases and deviations from the basic
model — indeed, we see quite a few.

Prakash, Celine, and Arndt Von Haeseler. "An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the Expected Fragment Starting-Point a

of Computational Biology 24.3 (2017): 200-212.



Biases abound in RNA-seq data

Blases In prep & sequencing

can have a significant effect on the .~
fragments we see: \/

25 50 75 100
GC fraction

ragment gc-b'as1— fctor(ebin) — (1,34 — (54,68 — (68, 101)
The GC-content of the fragment ’
affects the likelihood of sequencing

Sequence-specific bias?—
seguences surrounding fragment
affect the likelihood of sequencing .

Positional bias2—
fragments sequenced non-uniformly
across the body of a transcript S 4

1:Love, Michael |., John B. Hogenesch, and Rafael A. Irizarry. "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation." bioRxiv (2015): 025767 .

2:Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.



Biases abound in RNA-seq data

1,500 4 Read start

1.0 - ]
—_ — — T 500 - M
| | | 0 - . . . .
| ' : : 0 50 1,000 1,500 2,000
! - 1,500 1 mseq
L | | -
o 0.5-
- — - T T T Y
é E l g 0 500 1,000 1,500 2,000
= , ! O 1,500 {GC
=S [ | | i
k5 ! ' ' 500
- | -
x 00 ' —_ ' | ' 0- , , , .
: ° ! ' ' 0 50 1,000 1,500 2,000
| 0 —— : 1,500 1 GC + stretches
o) o) —é— -
! 5 500 -
-0.5 - : © 0 - T T T T
! ! ! ! 0 500 1,000 1,500 2,000

|
Read start mseq GC GC+str. All Position

Fragment GC-bias is often the most extreme

Love, M. |., Hogenesch, J. B., & Irizarry, R. A. (2016). Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nature biotechnology, 34(12), 1287 .



Basic idea (1): Modify the “effective length” of a
transcript to account for changes in the sampling
orobability. This leads to changes in soft-assignment in
EM -> changes in TPM.

Basic idea (2): The effective length of a transcript is the sum
of the bias terms at each position across a transcript. The
bias term at a given position is simply the

(observed / expected) sampling probabillity.

The trick Is how to define “"expected” given only
blased data.

1:Love, Michael |., J 3xiv (2015): 025767 .



Bias Modeling

31as correction works by adjusting the effective lengths of the transcripts:
The effective length becomes the sum of the per-base biases

LSy g k) VL () B (k) B (b R) B (t G+ R)

Pr{X = j}

—-ragment GC bias model: Foreground:

Observed
Density of fragments with specific GC content,

conditioned on GC fraction at read start/end Background:

Expected given est. abundances
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0
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First explored in Love, Michael |., John B. Hogenesch, and Rafael A. Irizarry. "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation." Nature biotechnology



Bias Modeling

31as correction works by adjusting the effective lengths of the transcripts:
The effective length becomes the sum of the per-base biases
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VLMM ftor the 10bp window surrounding the & Background:
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Seqg-specific bias model™:

Expected given est. abundances

Same, but independent
. , model for 3" end

Add this sequence to training set with weight =
P{f | ti}

*Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.



Priming bias is sample & sequence-specific
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Jones, Daniel C., et al. "A new approach to bias correction in RNA-Seq." Bioinformatics 28.7 (2012). 921-928.



Bias Modeling

31as correction works by adjusting the effective lengths of the transcripts:
The effective length becomes the sum of the per-base biases
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*Roberts, Adam, et al. "Improving RNA-Seq expression estimates by correcting for fragment bias." Genome biology 12.3 (2011): 1.




Estimating Posterior Uncertainty



One “issue” with maximum likelihood (ML)

The generative statistical model is a principled and elegant way to
represent the RNA-seq process.

't can be optimized ef

iciently using e.g. the

=M/ V

-M algorithm.

but, these efficient optimization algorithms return “point estimates”

of the abundances. That Is, there IS no notion of how certain we are
INn the computed abundance of transcript.



One “issue” with maximum likelihood (ML)

There are multiple sources of uncertainty e.g.

* Technical variance : If we sequenced the exact same sample
again, we'd get a different set of fragments, and, potentially a
different solution.

* Uncertainty in inference: We are almost never guaranteed to
find a unique, globally optimal result. It we started our

algorithm with different initialization parameters, we might get
a different result.

We're trying to find the best
parameters in a space with 10s to
100s of thousands of dimensions!




€Cq

One “issue” with maximum likelihood (ML)

It we started here

We'd end up here

We'd end up here

but, if we started here

® h

https://commons.wikimedia.org/wiki/File:l ocal_search_attraction_basins.png (CC BY-SA 3.0)
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Assessing Uncertainty
There are a tew ways to address this “issue”

Do a fully Bayesian inference?:

Infer the entire posterior distribution of parameters, not just a ML
estimate (e.g. using MCMC) — too slow!

Y, Posterior Giblbs Sampling?:3:
Starting from our ML estimate, do MCMC sampling to explore

how parameters vary — if our ML estimate is good, this can be made
quite fast.

Bootstrap Sampling4:

Resample (from range-factorized equivalence class counts) with

replacement, and re-run the ML estimate for each sample. This can be
made reasonably fast.

v

1: BitSeq (with MCMC) actually does this. It's very accurate, but very slow. [Glaus, Peter, Antti Honkela, and Magnus Rattray. "ldentifying differentially
expressed transcripts from RNA-seq data with biological variation." Bioinformatics 28.13 (2012): 1721-1728.]

2. RSEM has the ability to do this, and it seems to work well, but each sample scales in the # of reads. [Li, Bo, and Colin N. Dewey. "RSEM: accurate
transcript quantification from RNA-Seq data with or without a reference genome." BMC bioinformatics 12.1 (2011): 1.]

3: MMSEQ can perform Gibbs sampling over shared variables (i.e. equiv classes), producing estimates from the mean of the posterior dist.Turro, Ernest, et
al. "Haplotype and isoform specific expression estimation using multi-mapping BRNA-seq reads.”" Genome biology 12.2 (2011): 1.

4: |soDE introduced the idea of bootstrapping counts to assess quantification uncertainty. [Al Seesi, Sahar, et al. "Bootstrap-based differential gene

expression analysis for RNA-Seq data with and without replicates." BMC genomics 15.8 (2014): 1.], but it was first made practical / fast in kallisto by doing
the bootstrapping over equivalence classes.



A few ways to implement Gibbs Sampling for this problem
The model of MMSeq

He ~ Gam(a) ﬂ) (13)

The full conditionals are:

{Xil,...,Xit}‘{ul,..., ‘ut}’ki ~ MUlt ki’

ut|{X1t,...th}~Gam a+ZXit,[3+blt : (15)
]

Again, the s; are not needed as they are absent from
the full conditionals.

Turro, Ernest, et al. "Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads." Genome biology 12.2 (2011): 1.



A few ways to implement Gibbs Sampling for this problem

The model of BitSeq

P(1,]0,60°, R) = Cat(I,|pn), (10)
Gno = P(r,|noise)(1 — 9“’5)/2#),
m # 0; dnm = P(rn|L,)0m0% / Z(),
P(8|I,6%" R) = Dir(0|(a™ + C1,...,a"" + Cu)), (11)
P(6** 1,0, R) = Beta(0*"|a®" + N — Cy, B*" 4 C), (12)
Crn =061, =m).

[|Glaus, Peter, Antti Honkela, and Magnus Rattray. "ldentifying differentially expressed transcripts from RNA-seq data with biological variation.”
Bioinformatics 28.13 (2012): 1721-1728.]



A few ways to implement Gibbs Sampling for this problem

The model of BitSeq (collapsed sampler)

P(I,|I""™, R) = Cat(I,|o*), (9)
bty = P(rn|noise) (89 + ™) /29,
Dk act (—n)y (@™ +CS™) ) (6¥)
m 7& 07 ¢nm — P(TTL In)(a + C—{— )(]\/[o:d'”’—kcg_n))/zn )
C(+_”) = zi;én O(L; > 0)

with Zq({b*) being a constant normalising ¢,,* to sum up to 1, and a®" = 1, %t = 2, 32t = 2.

[|Glaus, Peter, Antti Honkela, and Magnus Rattray. "ldentifying differentially expressed transcripts from RNA-seq data with biological variation.”
Bioinformatics 28.13 (2012): 1721-1728.]



This uncertainty matters
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Figure 2.10: Posterior distribution of expression levels of three tran-
scripts of gene Q6ZMZO0. The posterior distribution is represented in form of
a histogram of expression samples converted into Log RPKM expression measure.
The dashed lines mark the mean expression for each transcript.

*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.



This uncertainty matters
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(a) Transcript sequence profile.
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(b) Splice variant model.

Figure 2.12: Exon model of transcripts of gene Q6ZMZ0. (a) transcript
sequence profile obtained from the UCSC genome browser (Kuhn et al., 2013). In
this annotation, transcript ucO0lbwm.3 has different 3’ untranslated region and
transcript uc010oho.1 has extra nucleotides at the end of second exon. As the
second change cannot be distinguished in the UCSC genome browser diagram,
we provide schematic splice variant model highlighting the differences (b).
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*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.



This uncertainty matters

We observe considerably increased variance due to read mapping

ambiguity
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If we know this increased uncertainty, we can propagate it & use it
in downstream analysis (differential expression)!

*Glaus, Peter. Bayesian Methods for Gene Expression Analysis from High-throughput Sequencing Data. Diss. University of Manchester, 2014.



